Issues in Pre-hospital Care
Staying Alive in the Field?

Nadine Levick MD. MPH

So you are EMS personnel…

► What’s going to kill you?
► What’s going to injure you?

EMS Safety IS Complex AND Multidisciplinary

EMS Fatalities

► 12.7 fatalities/100,000 EMS workers
► Greater than 2 X the national average (5.0 fatalities/100,000)
► Similar to Police (14.2/100,000) and Fire Fighters (16.5/100,000)

This morning’s Scope

► Key Issues
 ► Fatality and Injury data
 ► Guidelines – standards
 - Transport safety
 - Practice protocols
 - Occupational Health and Safety
► What’s missing
► What needs to happen NOW
► Future
 - Meaningful Goals
 - New policies
 - New practices
 - New standards
 - New vehicles
 - New technologies

A tragic emergency health care intervention outcome

‘New World’ Hazards for EMS...

and what is killing EMS?

EMS personnel fatalities*
- 74% transportation related
 - 1/5 of ground transport fatalities were struck by moving vehicles
- 11% were cardiovascular
- 9% were homicide
- 4% needle sticks, electrocution, drowning and other

So does it make sense?

- Gloves and universal precautions?...
 ... good biohazard protection BUT aren’t going to give much protection in a ambulance crash

A word about occupational transportation fatalities..

WE HAVE A BIG PROBLEM HERE

EMS Injuries*

- Higher than the injury rate for any private industry published by DOL
- 34.6 injuries/100 fulltime workers per year
- 1.5 x that of fire fighters
- 5.8 x that of health services personnel
- 7 x the national average

* Maguire, Hunting, Guidotti & Smith, Occupational Injuries among Emergency Medical Services Personnel, Prehospital and Emergency Care Oct/Dec 2005

And the injury events..

* Maguire, Hunting, Guidotti & Smith, Occupational Injuries among Emergency Medical Services Personnel, Prehospital and Emergency Care Oct/Dec 2005
Is any of this a surprise?

- It shouldn’t be…
- It’s all published and in the peer reviewed literature

We should use the best safety practices demonstrated

Key Issues

- Mythology
 - That Emergency Medical Service personnel are safe

- Injury Hazards
 - Biohazard
 - Physical/Mechanical trauma – THE BIG PROBLEM

- Motor Vehicle Crashes are the highest cause of death at work – EMS has > 2X the mean national rate

- An R & D and Regulatory Gap
 - Occupational Health and Safety
 - the workplace is in a vehicle – exposure data are scant
 - Automotive Safety
 - a vehicle is the work place – ‘exempt’ from automotive research and regulation

USA EMS

- EMS Systems - >15,000
- Personnel - ~1 million
 (~30% F/T professional & 70% volunteer)
- Vehicles - ~50,000
 (Type I, Type II, Type III, Freightliners, ?motorcycles)
- Transports - ~30 million patients
- Cost - ~$5 Billion annually
- Safety Oversight - ? Disparate

Guidelines – standards

- Transport safety
- Practice protocols
- Occupational Health and Safety

What’s missing

- What data is collected nationally
- What oversight is there
- Which organizations would determine policy
What needs to happen NOW

- **Data**
 - Epidemiology
 - Ergonomic
- **Safety oversight**

Future

- **Meaningful Goals**
- **New policies**
- **New practices**
- **New standards**
- **New vehicles**
- **New technologies**

Ideally Who, What and Where?

- **Occupational Health and Safety**
 - Epidemiology, Bio/Chem Hazards and Ergonomics
 - Regulation and Research
- **Automotive Safety**
 - Epidemiology, Engineering and Impact Biomechanics
 - Regulation and Research
- **EMS Industry**
 - Occ. Health, Automotive, Technical, Clinical & Fiscal data
 - Practice Policy, Risk Management and Fleet Safety
- **Academia**
 - Independent and collaborative
 - R & D and evaluation of all of the above

Goals

- **Standards for safety**
- **Policy based on Science**
- **Databases to demonstrate outcome**

Predictable risks

- More often at intersections, & with another vehicle (p < 0.001)*
- Most serious & fatal injuries occurred in rear (OR 2.7 vs front) & to improperly restrained occupants (OR 2.5 vs restrained)!*
- 82% of fatally injured EMS rear occupants unrestrained**
- > 74% of EMT occupational fatalities are MVC related***
- Serious head injury in >65% of fatal occupant injuries#
- 70% of fatal crashes EMS crashes during Emergency Use##
- More likely to crash at an intersection with traffic lights (37% vs 18% p=0.001) & more people & injuries/crash than similar sized vehicles###

Balance of concerns and risk during transport

- Response and transport time
- Clinical care provision
- Occupant safety/protection
- Public Safety

NHTSA, 49 CFR Parts 571, 572 & 589, Docket no. 92-28; notice 7

Ray AM, Kupas DF, Prehosp Emerg Care 2005 Dec; 9:412-415

NIOSH, 2003

NHTSA, 49 CFR Parts 571, 572 & 589, Docket no. 92-28; notice 7
“Are our policies killing people?”

- 1991-2000, 302,969 Emergency vehicles were involved in MVCs - 1,565 involving fatalities*
- In PA 1997-2001, ambulances were more likely than similar sized vehicles to be involved in:
 - 4 way intersection crashes (43% vs 23%, p=0.001)
 - Collisions at traffic signals (37% vs 18%, p=0.001)
 - MVCs with more people injured (76% vs 61%, p=0.001)

*Comparison of Crashes Involving Ambulances with those of similar sized vehicles – Adam Ray, Douglas Kupas, PEC Dec 2005;9:412-415

This is happening out there NOW....

Protective devices/concepts

- In the event of a crash
 - Vehicle crashworthiness
 - Seat/seat belt systems
 - Equipment lock downs
 - Padding
 - Head protection

- To prevent a crash
 - Driver feedback
 - Driver monitoring
 - Driver training
 - Vehicle technologies
 - Tiered dispatch
 - Appropriate policies

Benefit of Safety

- Any cost of addressing these issues is dwarfed in contrast to the huge burden of not doing so - in financial costs let alone the personal, societal, ethical and litigation costs

The ‘workplace’ IS a vehicle

- Providers often in vulnerable positions during transport.
 - Bench seat
 - Captains chair
 - Standing or kneeling

But what about head protection?

- View of Ambulance interior from Rear

- "It's no different than someone who delivers pizzas."

- "I'm different than someone who delivers food."

- "The personal who delivers the ambulance is the doctor and the nurse doing the work."

- "The personal who delivers the ambulance is the doctor and the nurse doing the work."

- "The personal who delivers the ambulance is the doctor and the nurse doing the work."

- "The personal who delivers the ambulance is the doctor and the nurse doing the work."

- "The personal who delivers the ambulance is the doctor and the nurse doing the work."
Role of a head protective device

- A simple, immediate and inexpensive adjunct – a protective device -
 - To protect occupants from hazardous interiors
 - As vehicle crashworthiness design advances
 - As driver training advances
 - For when equipment becomes unsecured
 - As EMS Safety Standards are developed, for both EMS vehicles and EMS occupational safety

Crash Prevention

- EVOC
- Tiered Dispatch
- The “Black Box”
- Intelligent vehicle design
- Appropriate policy

The “Black Box”

Driver behavior monitoring and feedback device

Purpose of ‘Black box’ Program

- Enhance Safety
- Improve Driver Performance
- Save Maintenance Dollars
- Aid Accident / Incident Investigation

MEMS Road Safety Average Between Count Miles 2003/2005

Other monitoring devices

- Primarily to record events during and immediately preceding a crash
- Give no driver crash prevention feedback
- Administratively burdensome
- Intrusive
- Not demonstrated to be as effective in improving vehicle maintenance costs or as effective in modifying driver behavior long term
The jury is out on

- Opticon
- Simulators

Air EMS is a role model for safety initiatives and focus

Safety Management

- A Safety Culture
- Protective Policies
- Protective Devices
 - In the event of a crash
 - To prevent a crash
- Continuous Education and Evaluation

Creating a Safety Culture

within a company must start with upper management’s commitment to safety

- Awareness
- Training
- Incentive

USA EMS Risk/Hazards

- Predictable risks
- Serious occupational hazard
- Predictable fatal injuries
Preparation of test vehicles

Pre-impact CTD positioning

Current and Future Research
- Epidemiology
- Ergonomic hazards
- Bio/Chem/Radiation hazard
- PPE & Head protection
- Transport
 - Vehicle/Occupant automotive testing
 - Vehicle design innovation
 - Driver behavior (Real time and Simulated)
 - Intelligent Transportation Systems
- Operations tracking
- Data systems/reporting systems
- Enhanced Practice policies

EMS Safety
Policy that Reflects SCIENCE

Very Important Principle
Ambulance transport safety is part of a SYSTEM, the overall balance of risk involves the safety of all occupants and the public

Conclusion
- Major advances in EMS safety research, infrastructure and practice over the past 5 years
- New technologies for vehicle design, occupant PPE and equipment restraint and driver performance are now available
- Development of substantive EMS safety standards is a necessity and a reality
- Enhanced cross disciplinary collaboration in development of safety initiatives now exist
- EMS is still way behind the state of the art in vehicle safety and occupant protection

PREDICTABLE PREVENTABLE and NO ACCIDENT
And....

- It is no longer acceptable for EMS to be functioning outside of automotive safety and PPE safety standards for prevention of and protection of EMS providers and the public from injury and death

Thank you! Any Questions??
http://www.objectivesafety.net

Acknowledgements

- EMSC funding –Targeted Issues Grant, PED-SAFE-T
- The late Capt. Garry Criddle – ExNHTSA/EMSC
- George Gillespie & Michael Schultze – US Military NAWC
- Joe McIntire & Joe Liscina - USAARL
- Veridian/Calspan/CenTIR
- Ambulance Association of America
- The USA EMS community
- Bill Murphy - Ontario Ministry of Health
- Muttiah Jeyendra - Standards Australia
- Research assistants – Allison Better, Tony Tsai, Philip Lee, Puneet Gupta and Leo McFarland.